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Example 10.1 The two thigh bones
(femurs), each of cross-sectional arealO cm?
support the upper part of a human body of
mass 40 kg. Estimate the average pressure
sustained by the femurs.

Answer Total cross-sectional area of the
femurs is A =2 x 10 cm? = 20 x 10* m?2 The
force acting on them is F = 40 kg wt = 400 N
(taking g = 10 m s™?). This force is acting
vertically down and hence, normally on the
femurs. Thus, the average pressure is

F

Pav=X=2><105an2 <

10.2.1 Pascal’s Law

The French scientist Blaise Pascal observed that
the pressure in a fluid at rest is the same at all
points if they are at the same height. This fact
may be demonstrated in a simple way.

—

Fig. 10.2 Proof of Pascal’s law. ABC-DEF is an
element of the interior of a fluid at rest.
This element is in the form of a right-
angled prism. The element is small so that
the effect of gravity can be ignored, but it
has been enlarged for the sake of clarity.

Fig. 10.2 shows an element in the interior of
a fluid at rest. This element ABC-DEF is in the
form of a right-angled prism. In principle, this
prismatic element is very small so that every
part of it can be considered at the same depth
from the liquid surface and therefore, the effect
of the gravity is the same at all these points.
But for clarity we have enlarged this element.
The forces on this element are those exerted by
the rest of the fluid and they must be normal to
the surfaces of the element as discussed above.
Thus, the fluid exerts pressures P, B, and P, on
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this element of area corresponding to the normal
forces F,, F, and F, as shown in Fig. 10.2 on the
faces BEFC, ADFC and ADEB denoted by A , A
and A_ respectively. Then

F, sin6 =F, F cos®=F, (by equilibrium)
A sin6 = A, A cosd=A (bygeometry)
Thus,
F, F. F,
b __c_ _[1; P =PC=PG.
A, A A, b (10.4)

Hence, pressure exerted is same in all
directions in a fluid at rest. It again reminds us
that like other types of stress, pressure is not a
vector quantity. No direction can be assigned
to it. The force against any area within (or
bounding) a fluid at rest and under pressure is
normal to the area, regardless of the orientation
of the area.

Now consider a fluid element in the form of a
horizontal bar of uniform cross-section. The bar
is in equilibrium. The horizontal forces exerted
at its two ends must be balanced or the
pressure at the two ends should be equal. This
proves that for a liquid in equilibrium the
pressure is same at all points in a horizontal
plane. Suppose the pressure were not equal in
different parts of the fluid, then there would be
a flow as the fluid will have some net force
acting on it. Hence in the absence of flow the
pressure in the fluid must be same everywhere
in a horizontal plane.

10.2.2 Variation of Pressure with Depth

Consider a fluid at rest in a container. In
Fig. 10.3 point 1 is at height h above a point 2.
The pressures at points 1 and 2 are P, and P,
respectively. Consider a cylindrical element of
fluid having area of base A and height h. As the
fluid is at rest the resultant horizontal forces
should be zero and the resultant vertical forces
should balance the weight of the element. The
forces acting in the vertical direction are due to
the fluid pressure at the top (P,A) acting
downward, at the bottom (P,A) acting upward.
If mg is weight of the fluid in the cylinder we
have

(P,-P) A=mg (10.5)

Now, if p is the mass density of the fluid, we
have the mass of fluid to be m = pV= phA so
that

P,-P= pgh (10.6)
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Fig.10.3 Fluid under gravity. The effect of gravity is
illustrated through pressure on a vertical
cylindrical column.

Pressure difference depends on the vertical
distance h between the points (1 and 2), mass
density of the fluid p and acceleration due to
gravity g. If the point 1 under discussion is
shifted to the top of the fluid (say, water), which
is open to the atmosphere, P, may be replaced
by atmospheric pressure (P,) and we replace P,
by P. Then Eq. (10.6) gives

P=P +pgh (10.7)

Thus, the pressure P, at depth below the
surface of a liquid open to the atmosphere is
greater than atmospheric pressure by an
amount pgh. The excess of pressure, P- P, at
depth his called a gauge pressure at that point.

The area of the cylinder is not appearing in
the expression of absolute pressure in Eq. (10.7).
Thus, the height of the fluid column is important
and not cross-sectional or base area or the shape
of the container. The liquid pressure is the same
at all points at the same horizontal level (same
depth). The result is appreciated through the
example of hydrostatic paradox. Consider three
vessels A, B and C [Fig.10.4] of different shapes.
They are connected at the bottom by a horizontal
pipe. On filling with water, the level in the three
vessels is the same, though they hold different
amounts of water. This is so because water at
the bottom has the same pressure below each
section of the vessel.

3 A B
Fig 10.4 Illustration of hydrostatic paradox. The
three vessels A, B and C contain different

amounts of liquids, all upto the same
height.

Example 10.2 What is the pressure on a
swimmer 10 m below the surface of a lake?

Answer Here
h=10m and p = 1000 kg m*. Take g = 10 m s2
From Eq. (10.7)
P=P +pgh
=1.01 x 10° Pa+ 1000 kg m®x 10 m s2x 10 m
=2.01 x 10° Pa
= 2 atm
This is a 100% increase in pressure from
surface level. At a depth of 1 km, the increase
in pressure is 100 atm! Submarines are designed
to withstand such enormous pressures. |

10.2.3 Atmospheric Pressure and
Gauge Pressure

The pressure of the atmosphere at any point is
equal to the weight of a column of air of unit
cross-sectional area extending from that point
to the top of the atmosphere. At sea level, it is
1.013 x 10%° Pa (1 atm). Italian scientist
Evangelista Torricelli (1608-1647) devised for
the first time a method for measuring
atmospheric pressure. A long glass tube closed
at one end and filled with mercury is inverted
into a trough of mercury as shown in Fig.10.5 (a).
This device is known as ‘mercury barometer’.
The space above the mercury column in the tube
contains only mercury vapour whose pressure
P is so small that it may be neglected. Thus,
the pressure at Point A=0. The pressure inside
the coloumn at Point B must be the same as the
pressure at Point C, which is atmospheric
pressure, P,

P =pgh (10.8)
where p is the density of mercury and h is the
height of the mercury column in the tube.
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In the experiment it is found that the mercury
column in the barometer has a height of about
76 cm at sea level equivalent to one atmosphere
(1 atm). This can also be obtained using the
value of p in Eq. (10.8). A common way of stating
pressure is in terms of cm or mm of mercury
(Hg). A pressure equivalent of 1 mm is called a
torr (after Torricelli).

1 torr = 133 Pa.

The mm of Hg and torr are used in medicine
and physiology. In meteorology, a common unit
is the bar and millibar.

1 bar = 10° Pa

An open tube manometer is a useful
instrument for measuring pressure differences.
It consists of a U-tube containing a suitable
liquid i.e., a low density liquid (such as oil) for
measuring small pressure differences and a
high density liquid (such as mercury) for large
pressure differences. One end of the tube is open
to the atmosphere and the other end is
connected to the system whose pressure we want
to measure [see Fig. 10.5 (b)]. The pressure P at
A is equal to pressure at point B. What we
normally measure is the gauge pressure, which
is P- P, given by Eq. (10.8) and is proportional
to manometer height h.

S4—P=0
A
h
B
Py ‘
\ R o
B

Fig 10.5 (a) The mercury barometer.
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B

(b) The open tube manometer
Fig 10.5 Two pressure measuring devices.

Pressure is same at the same level on both
sides of the U-tube containing a fluid. For
liquids, the density varies very little over wide
ranges in pressure and temperature and we can
treat it safely as a constant for our present
purposes. Gases on the other hand, exhibits
large variations of densities with changes in
pressure and temperature. Unlike gases, liquids
are, therefore, largely treated as incompressible.

Example 10.3 The density of the
atmosphere at sea level is 1.29 kg/m?.
Assume that it does not change with
altitude. Then how high would the
atmosphere extend?

Answer We use Eq. (10.7)
pgh = 1.29kgm>x9.8ms?>xh m=1.01x10°Pa
.. h=7989 m =8 km
In reality the density of air decreases with
height. So does the value of g. The atmospheric
cover extends with decreasing pressure over
100 km. We should also note that the sea level
atmospheric pressure is not always 760 mm of
Hg. A drop in the Hg level by 10 mm or more is a
sign of an approaching storm. <

‘ Example 10.4 At a depth of 1000 m in an
ocean (a) what is the absolute pressure?
(b) What is the gauge pressure? (c) Find
the force acting on the window of area
20 cm x 20 cm of a submarine at this depth,
the interior of which is maintained at sea-
level atmospheric pressure. (The density of
sea water is 1.03 x 10° kg m?3,
g=10 ms?2)
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Answer Here h=1000m and p =1.03x 10°kgm™*

] ; C A B
(@) From Eq. (10.6), absolute pressure
P=P +pgh
=1.01 x 10°Pa
+1.03x 10°kgm™ x 10m s2x 1000 m
= 104.01 x 10°Pa

= 104 atm
(b) Gauge pressure is PP, = pgh = P,
P =1.03x 10°kgm>x 10ms?x 1000 m

=103 x 10°Pa
~103 atm This indicates that when the pressure on the

cylinder was increased, it was distributed

uniformly throughout. We can say whenever

external pressure is applied on any part of a

fluid contained in a vessel, it is transmitted

undiminished and equally in all directions.

This is another form of the Pascal’s law and it
has many applications in daily life.

A number of devices, such as hydraulic lift

< and hydraulic brakes, are based on the Pascal’s

law. In these devices, fluids are used for

10.2.4 Hydraulic Machines transmitting pressure. In a hydraulic lift, as

shown in Fig. 10.6 (b), two pistons are separated

by the space filled with a liquid. A piston of small

cross-section A, is used to exert a force F, directly

F,
on the liquid. The pressure P = All is

Fig 10.6 (a) Whenever external pressure is applied
on any part of a fluid in a vessel, it is
equally transmitted in all directions.

(c) The pressure outside the submarine is
P=P +pghand the pressure inside itis P..
Hence, the net pressure acting on the
window is gauge pressure, P, = pgh. Since
the area of the window is A = 0.04 m?, the
force acting on it is
F=P,A=103x 10°Pax 0.04m*=4.12x 10°N

Let us now consider what happens when we
change the pressure on a fluid contained in a
vessel. Consider a horizontal cylinder with a
piston and three vertical tubes at different
points [Fig. 10.6 (a)]. The pressure in the
horizontal cylinder is indicated by the height of transmitted throughout the liquid to the larger
liquid column in the vertical tubes. It is necessarily ~ cylinder attached with a larger piston of area A,,
the same in all. If we push the piston, the fluid level =~ Which results in an upward force of P x A,.

rises in all the tubes, again reaching the same level Therefore, the piston is capable of supporting a
in each one of them. large force (large weight of, say a car, or a truck,

Archemedes’ Principle

Fluid appears to provide partial support to the objects placed in it. When a body is wholly or partially
immersed in a fluid at rest, the fluid exerts pressure on the surface of the body in contact with the
fluid. The pressure is greater on lower surfaces of the body than on the upper surfaces as pressure in
a fluid increases with depth. The resultant of all the forces is an upward force called buoyant force.
Suppose that a cylindrical body is immersed in the fluid. The upward force on the bottom of the body
is more than the downward force on its top. The fluid exerts a resultant upward force or buoyant force
on the body equal to (P,— P) X A (Fig. 10.3). We have seen in equation 10.4 that (P,-P )A = pghA. Now,
hA is the volume of the solid and phAis the weight of an equivaliant volume of the fluid. (P,-P,)A = mg.
Thus, the upward force exerted is equal to the weight of the displaced fluid.

The result holds true irrespective of the shape of the object and here cylindrical object is considered
only for convenience. This is Archimedes’ principle. For totally immersed objects the volume of the
fluid displaced by the object is equal to its own volume. If the density of the immersed object is more
than that of the fluid, the object will sink as the weight of the body is more than the upward thrust. If
the density of the object is less than that of the fluid, it floats in the fluid partially submerged. To
calculate the volume submerged, suppose the total volume of the object is V, and a part v, of it is
submerged in the fluid. Then, the upward force which is the weight of the dlsplaced fluid is PgV,.
which must equal the weight of the body; p gV, = pgV,or p, p= V. /V» The apparent weight of the
floating body is zero.

This principle can be summarised as; ‘the loss of weight of a body submerged (partially or fully) in
a fluid is equal to the weight of the fluid displaced’.
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KA,
placed on the platform) F,= PA,= ~—,~ . By
1L

changing the force at A, the platform can be
moved up or down. Thus, the applied force has

A
been increased by a factor of AZ and this factor
i !

is the mechanical advantage of the device. The
example below clarifies it.

Fig 10.6 (b) Schematic diagram illustrating the principle
behind the hydraulic lift, a device used to
lift heavy loads.

Example 10.5 Two syringes of different
cross-sections (without needles) filled with
water are connected with a tightly fitted
rubber tube filled with water. Diameters of
the smaller piston and larger piston are 1.0
cm and 3.0 cm respectively. (a) Find the
force exerted on the larger piston when a
force of 10 N is applied to the smaller piston.
(b) If the smaller piston is pushed in through
6.0 cm, how much does the larger piston
move out?

Answer (a) Since pressure is transmitted
undiminished throughout the fluid,

#(3/2x10”m)’ loN
X

Al #(1/2x10%m)’
=90 N

(b) Water is considered to be perfectly
incompressible. Volume covered by the
movement of smaller piston inwards is equal to
volume moved outwards due to the larger piston.

LA =LA
A, n(1/2x107m)’

L,=2L

g = > X6x107m
4, 7m(3/2x107m)

~0.67 x 10?2m =0.67 cm
Note, atmospheric pressure is common to both
pistons and has been ignored. <

k Example 10.6 In a car lift compressed air
exerts a force F, on a small piston having
a radius of 5.0 cm. This pressure is
transmitted to a second piston of radius
15 cm (Fig 10.7). If the mass of the car to
be lifted is 1350 kg, calculate F,. What is
the pressure necessary to accomplish this
task? (g = 9.8 ms?).

Answer Since pressure is transmitted
undiminished throughout the fluid,

% -2 2
Fo=fp o 2010 55010 . 9.8ms?)
A, 7(15 x 10" “m)
= 1470N
~ 1L5x 10°N

The air pressure that will produce this
force is

This is almost double the atmospheric
pressure. <
Hydraulic brakes in automobiles also work on
the same principle. When we apply a little force
on the pedal with our foot the master piston

Archimedes (287-212 B.C.)

Archimedes was a Greek philosopher, mathematician, scientist and engineer. He
invented the catapult and devised a system of pulleys and levers to handle heavy
loads. The king of his native city Syracuse, Hiero II, asked him to determine if his gold
crown was alloyed with some cheaper metal, such as silver without damaging the crown.
The partial loss of weight he experienced while lying in his bathtub suggested a solution
to him. According to legend, he ran naked through the streets of Syracuse, exclaiming “Eureka,
eureka!”, which means “I have found it, I have found it!”
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moves inside the master cylinder, and the
pressure caused is transmitted through the
brake oil to act on a piston of larger area. A large
force acts on the piston and is pushed down
expanding the brake shoes against brake lining.
In this way, a small force on the pedal produces
a large retarding force on the wheel. An
important advantage of the system is that the
pressure set up by pressing pedal is transmitted
equally to all cylinders attached to the four
wheels so that the braking effort is equal on
all wheels.

10.3 STREAMLINE FLOW

So far we have studied fluids at rest. The study
of the fluids in motion is known as fluid
dynamics. When a water tap is turned on slowly,
the water flow is smooth initially, but loses its
smoothness when the speed of the outflow is
increased. In studying the motion of fluids, we
focus our attention on what is happening to
various fluid particles at a particular point in
space at a particular time. The flow of the fluid
is said to be steady if at any given point, the
velocity of each passing fluid particle remains
constant in time. This does not mean that the
velocity at different points in space is same. The
velocity of a particular particle may change as it
moves from one point to another. That is, at some
other point the particle may have a different
velocity, but every other particle which passes
the second point behaves exactly as the previous
particle that has just passed that point. Each
particle follows a smooth path, and the paths of
the particles do not cross each other.

\./\g/

P @ 9

(b)

Fig. 10.7 The meaning of streamlines. (a) A typical
trajectory of a fluid particle.
(b) A region of streamline flow.

The path taken by a fluid particle under a
steady flow is a streamline. It is defined as a
curve whose tangent at any point is in the
direction of the fluid velocity at that point.
Consider the path of a particle as shown in
Fig.10.7 (a), the curve describes how a fluid
particle moves with time. The curve PQ is like a
permanent map of fluid flow, indicating how the
fluid streams. No two streamlines can cross, for
if they do, an oncoming fluid particle can go
either one way or the other and the flow would
not be steady. Hence, in steady flow, the map of
flow is stationary in time. How do we draw closely
spaced streamlines ? If we intend to show
streamline of every flowing particle, we would
end up with a continuum of lines. Consider planes
perpendicular to the direction of fluid flow e.g.,
at three points P, R and Q in Fig.10.7 (b). The
plane pieces are so chosen that their boundaries
be determined by the same set of streamlines.
This means that number of fluid particles
crossing the surfaces as indicated at P, Rand Q
is the same. If area of cross-sections at these
points are A,,A; and A, and speeds of fluid
particles are v,, v, and v,, then mass of fluid
Am, crossing at A, in a small interval of time At
is p, A v, At. Similarly mass of fluid Am, flowing
or crossing at A, in a small interval of time At is
PALV, At and mass of fluid Amg is p A v, At
crossing at A,. The mass of liquid flowing out
equals the mass flowing in, holds in all cases.
Therefore,

PpALUAL = p A DAL= p A VAL (10.9)
For flow of incompressible fluids
Pr=Pr=Pg
Equation (10.9) reduces to
v, = Au, = ALY, (10.10)

which is called theQ equation of continuity and
it is a statement of conservation of mass in flow
of incompressible fluids. In general

Av = constant (10.11)

Av gives the volume flux or flow rate and
remains constant throughout the pipe of flow.
Thus, at narrower portions where the
streamlines are closely spaced, velocity
increases and its vice versa. From (Fig 10.7b) it
is clear that A, > Ajor v, < v, the fluid is
accelerated while passing from R to Q. This is
associated with a change in pressure in fluid
flow in horizontal pipes.

Steady flow is achieved at low flow speeds.
Beyond a limiting value, called critical speed,
this flow loses steadiness and becomes
turbulent. One sees this when a fast flowing
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stream encounters rocks, small foamy
whirlpool-like regions called ‘white water
rapids are formed.

Figure 10.8 displays streamlines for some
typical flows. For example, Fig. 10.8(a) describes
a laminar flow where the velocities at different
points in the fluid may have different
magnitudes but their directions are parallel.
Figure 10.8 (b) gives a sketch of turbulent flow.

S ﬁ
= ==

Fig. 10.8 (a) Some streamlines for fluid flow.
(b) A jet of air striking a flat plate placed
perpendicular to it. This is an example
of turbulent flow.

10.4 BERNOULLI'S PRINCIPLE

Fluid flow is a complex phenomenon. But we
can obtain some useful properties for steady
or streamline flows using the conservation
of energy.

Consider a fluid moving in a pipe of varying
cross-sectional area. Let the pipe be at varying
heights as shown in Fig. 10.9. We now suppose
that an incompressible fluid is flowing through
the pipe in a steady flow. Its velocity must
change as a consequence of equation of
continuity. A force is required to produce this
acceleration, which is caused by the fluid
surrounding it, the pressure must be different
in different regions. Bernoulli’'s equation is a
general expression that relates the pressure
difference between two points in a pipe to both
velocity changes (kinetic energy change) and
elevation (height) changes (potential energy

change). The Swiss Physicist Daniel Bernoulli
developed this relationship in 1738.

Consider the flow at two regions 1 (i.e., BC)
and 2 (i.e., DE). Consider the fluid initially lying
between B and D. In an infinitesimal time
interval At, this fluid would have moved. Suppose
v, is the speed at B and v, at D, then fluid initially
at B has moved a distance v At to C (v,Atis small
enough to assume constant cross-section along
BC). In the same interval At the fluid initially at
D moves to E, a distance equal to v,At. Pressures
P, and P, act as shown on the plane faces of
areas A and A, binding the two regions. The
work done on the fluid at left end (BC) is W, =
P A (v,Af) = PAV. Since the same volume AV
passes through both the regions (from the
equation of continuity) the work done by the fluid
at the other end (DE) is W, = P A, (v,Af) = P,AV or,
the work done on the fluid is -P,AV. So the total
work done on the fluid is

W, -W,= (P-P) AV

Part of this work goes into changing the kinetic
energy of the fluid, and part goes into changing
the gravitational potential energy. If the density
of the fluid is p and Am = pA v At = pAV is the
mass passing through the pipe in time At, then
change in gravitational potential energy is

AU = pgAV (h,-h)

The change in its kinetic energy is

AK = p AV (v,2-v?)

We can employ the work — energy theorem
(Chapter 6) to this volume of the fluid and
this yields

1
(P—P) AV = (5) p AV (v,>-v?) + pgAV (h,—-h)

We now divide each term by AV to obtain

1
(P-P,) = (5] p (02 =1 + pg (h,~h)

Daniel Bernoulli (1700-1782)

Daniel Bernoulli was a Swiss scientist and mathematician, who along with Leonard
Euler had the distinction of winning the French Academy prize for mathematics
10 times. He also studied medicine and served as a professor of anatomy and
botany for a while at Basle, Switzerland. His most well-known work was in
hydrodynamics, a subject he developed from a single principle: the conservation of
energy. His work included calculus, probability, the theory of vibrating strings,

and apphed mathematlcs He has been called the founder of mathematical physics.
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